3.3.41 \(\int \frac {1}{(d+e x^2) (a+c x^4)} \, dx\) [241]

3.3.41.1 Optimal result
3.3.41.2 Mathematica [A] (verified)
3.3.41.3 Rubi [A] (verified)
3.3.41.4 Maple [A] (verified)
3.3.41.5 Fricas [B] (verification not implemented)
3.3.41.6 Sympy [F(-1)]
3.3.41.7 Maxima [F(-2)]
3.3.41.8 Giac [A] (verification not implemented)
3.3.41.9 Mupad [B] (verification not implemented)

3.3.41.1 Optimal result

Integrand size = 19, antiderivative size = 336 \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\frac {e^{3/2} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \left (c d^2+a e^2\right )}-\frac {\sqrt [4]{c} \left (\sqrt {c} d-\sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \left (c d^2+a e^2\right )}+\frac {\sqrt [4]{c} \left (\sqrt {c} d-\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{2 \sqrt {2} a^{3/4} \left (c d^2+a e^2\right )}-\frac {\sqrt [4]{c} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \left (c d^2+a e^2\right )}+\frac {\sqrt [4]{c} \left (\sqrt {c} d+\sqrt {a} e\right ) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \left (c d^2+a e^2\right )} \]

output
1/4*c^(1/4)*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))*(-e*a^(1/2)+d*c^(1/2))/a^ 
(3/4)/(a*e^2+c*d^2)*2^(1/2)+1/4*c^(1/4)*arctan(1+c^(1/4)*x*2^(1/2)/a^(1/4) 
)*(-e*a^(1/2)+d*c^(1/2))/a^(3/4)/(a*e^2+c*d^2)*2^(1/2)-1/8*c^(1/4)*ln(-a^( 
1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))*(e*a^(1/2)+d*c^(1/2))/a^(3/4)/ 
(a*e^2+c*d^2)*2^(1/2)+1/8*c^(1/4)*ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2 
*c^(1/2))*(e*a^(1/2)+d*c^(1/2))/a^(3/4)/(a*e^2+c*d^2)*2^(1/2)+e^(3/2)*arct 
an(x*e^(1/2)/d^(1/2))/(a*e^2+c*d^2)/d^(1/2)
 
3.3.41.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.70 \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\frac {8 a^{3/4} e^{3/2} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )+\sqrt {2} \sqrt [4]{c} \sqrt {d} \left (\left (-2 \sqrt {c} d+2 \sqrt {a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )+2 \left (\sqrt {c} d-\sqrt {a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )-\left (\sqrt {c} d+\sqrt {a} e\right ) \left (\log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )-\log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )\right )\right )}{8 a^{3/4} \sqrt {d} \left (c d^2+a e^2\right )} \]

input
Integrate[1/((d + e*x^2)*(a + c*x^4)),x]
 
output
(8*a^(3/4)*e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + Sqrt[2]*c^(1/4)*Sqrt[d]*( 
(-2*Sqrt[c]*d + 2*Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)] + 2*( 
Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)] - (Sqrt[c]* 
d + Sqrt[a]*e)*(Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2] - L 
og[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])))/(8*a^(3/4)*Sqrt[d 
]*(c*d^2 + a*e^2))
 
3.3.41.3 Rubi [A] (verified)

Time = 0.45 (sec) , antiderivative size = 336, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1485, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^4\right ) \left (d+e x^2\right )} \, dx\)

\(\Big \downarrow \) 1485

\(\displaystyle \int \left (\frac {e^2}{\left (d+e x^2\right ) \left (a e^2+c d^2\right )}+\frac {c \left (d-e x^2\right )}{\left (a+c x^4\right ) \left (a e^2+c d^2\right )}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{c} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right ) \left (\sqrt {c} d-\sqrt {a} e\right )}{2 \sqrt {2} a^{3/4} \left (a e^2+c d^2\right )}+\frac {\sqrt [4]{c} \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right ) \left (\sqrt {c} d-\sqrt {a} e\right )}{2 \sqrt {2} a^{3/4} \left (a e^2+c d^2\right )}-\frac {\sqrt [4]{c} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \left (a e^2+c d^2\right )}+\frac {\sqrt [4]{c} \left (\sqrt {a} e+\sqrt {c} d\right ) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{4 \sqrt {2} a^{3/4} \left (a e^2+c d^2\right )}+\frac {e^{3/2} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )}{\sqrt {d} \left (a e^2+c d^2\right )}\)

input
Int[1/((d + e*x^2)*(a + c*x^4)),x]
 
output
(e^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]])/(Sqrt[d]*(c*d^2 + a*e^2)) - (c^(1/4) 
*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[ 
2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d - Sqrt[a]*e)*ArcTan[1 + 
(Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(2*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) - (c^(1/ 
4)*(Sqrt[c]*d + Sqrt[a]*e)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[ 
c]*x^2])/(4*Sqrt[2]*a^(3/4)*(c*d^2 + a*e^2)) + (c^(1/4)*(Sqrt[c]*d + Sqrt[ 
a]*e)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(4*Sqrt[2]*a 
^(3/4)*(c*d^2 + a*e^2))
 

3.3.41.3.1 Defintions of rubi rules used

rule 1485
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[Expa 
ndIntegrand[(d + e*x^2)^q/(a + c*x^4), x], x] /; FreeQ[{a, c, d, e}, x] && 
NeQ[c*d^2 + a*e^2, 0] && IntegerQ[q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
3.3.41.4 Maple [A] (verified)

Time = 0.33 (sec) , antiderivative size = 253, normalized size of antiderivative = 0.75

method result size
default \(\frac {c \left (\frac {d \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 a}-\frac {e \sqrt {2}\, \left (\ln \left (\frac {x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{8 c \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{a \,e^{2}+c \,d^{2}}+\frac {e^{2} \arctan \left (\frac {e x}{\sqrt {e d}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {e d}}\) \(253\)
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (a^{5} e^{4}+2 a^{4} c \,d^{2} e^{2}+a^{3} c^{2} d^{4}\right ) \textit {\_Z}^{4}-4 a^{2} c d e \,\textit {\_Z}^{2}+c \right )}{\sum }\textit {\_R} \ln \left (\left (\left (-2 a^{5} e^{7}-2 a^{4} c \,d^{2} e^{5}+2 a^{3} c^{2} d^{4} e^{3}+2 a^{2} c^{3} d^{6} e \right ) \textit {\_R}^{4}+\left (15 a^{2} c d \,e^{4}-2 a \,c^{2} d^{3} e^{2}-c^{3} d^{5}\right ) \textit {\_R}^{2}-6 e^{3} c \right ) x +\left (4 a^{4} e^{6}+7 a^{3} c \,d^{2} e^{4}+2 a^{2} c^{2} d^{4} e^{2}-a \,c^{3} d^{6}\right ) \textit {\_R}^{3}+\left (-5 a c d \,e^{3}-c^{2} d^{3} e \right ) \textit {\_R} \right )\right )}{4}+\frac {\sqrt {-e d}\, e \ln \left (\left (-16 a^{2} d \,e^{5}-a c \,d^{3} e^{3}-c^{2} d^{5} e \right ) x +16 \left (-e d \right )^{\frac {3}{2}} a^{2} e^{3}-4 \left (-e d \right )^{\frac {3}{2}} a c \,d^{2} e -5 a c \,e^{2} \sqrt {-e d}\, d^{3}-c^{2} d^{5} \sqrt {-e d}\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right )}-\frac {\sqrt {-e d}\, e \ln \left (\left (-16 a^{2} d \,e^{5}-a c \,d^{3} e^{3}-c^{2} d^{5} e \right ) x -16 \left (-e d \right )^{\frac {3}{2}} a^{2} e^{3}+4 \left (-e d \right )^{\frac {3}{2}} a c \,d^{2} e +5 a c \,e^{2} \sqrt {-e d}\, d^{3}+c^{2} d^{5} \sqrt {-e d}\right )}{2 d \left (a \,e^{2}+c \,d^{2}\right )}\) \(453\)

input
int(1/(e*x^2+d)/(c*x^4+a),x,method=_RETURNVERBOSE)
 
output
c/(a*e^2+c*d^2)*(1/8*d*(a/c)^(1/4)/a*2^(1/2)*(ln((x^2+(a/c)^(1/4)*x*2^(1/2 
)+(a/c)^(1/2))/(x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2)))+2*arctan(2^(1/2)/( 
a/c)^(1/4)*x+1)+2*arctan(2^(1/2)/(a/c)^(1/4)*x-1))-1/8*e/c/(a/c)^(1/4)*2^( 
1/2)*(ln((x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*x*2^(1/2 
)+(a/c)^(1/2)))+2*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+2*arctan(2^(1/2)/(a/c)^( 
1/4)*x-1)))+e^2/(a*e^2+c*d^2)/(e*d)^(1/2)*arctan(e*x/(e*d)^(1/2))
 
3.3.41.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2030 vs. \(2 (247) = 494\).

Time = 0.68 (sec) , antiderivative size = 4084, normalized size of antiderivative = 12.15 \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\text {Too large to display} \]

input
integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="fricas")
 
output
[-1/4*((c*d^2 + a*e^2)*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3* 
e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^ 
3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 
2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2*d^2 - a*c*e^2)*x + (a*c^2*d^3 - a^2* 
c*d*e^2 + (a^3*c^2*d^4*e + 2*a^4*c*d^2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a 
*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4 
*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*sqrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d 
^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d 
^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/ 
(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))) - (c*d^2 + a*e^2)*sqrt((2*c*d*e 
+ (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 
 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6 
*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4))*log(-(c^2 
*d^2 - a*c*e^2)*x - (a*c^2*d^3 - a^2*c*d*e^2 + (a^3*c^2*d^4*e + 2*a^4*c*d^ 
2*e^3 + a^5*e^5)*sqrt(-(c^3*d^4 - 2*a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^ 
8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))*s 
qrt((2*c*d*e + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4)*sqrt(-(c^3*d^4 - 2* 
a*c^2*d^2*e^2 + a^2*c*e^4)/(a^3*c^4*d^8 + 4*a^4*c^3*d^6*e^2 + 6*a^5*c^2*d^ 
4*e^4 + 4*a^6*c*d^2*e^6 + a^7*e^8)))/(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^ 
4))) + (c*d^2 + a*e^2)*sqrt((2*c*d*e - (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a...
 
3.3.41.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\text {Timed out} \]

input
integrate(1/(e*x**2+d)/(c*x**4+a),x)
 
output
Timed out
 
3.3.41.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\text {Exception raised: ValueError} \]

input
integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.3.41.8 Giac [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 344, normalized size of antiderivative = 1.02 \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\frac {e^{2} \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{{\left (c d^{2} + a e^{2}\right )} \sqrt {d e}} + \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{2 \, {\left (\sqrt {2} a c^{3} d^{2} + \sqrt {2} a^{2} c^{2} e^{2}\right )}} + \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d - \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{2 \, {\left (\sqrt {2} a c^{3} d^{2} + \sqrt {2} a^{2} c^{2} e^{2}\right )}} + \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{4 \, {\left (\sqrt {2} a c^{3} d^{2} + \sqrt {2} a^{2} c^{2} e^{2}\right )}} - \frac {{\left (\left (a c^{3}\right )^{\frac {1}{4}} c^{2} d + \left (a c^{3}\right )^{\frac {3}{4}} e\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{4 \, {\left (\sqrt {2} a c^{3} d^{2} + \sqrt {2} a^{2} c^{2} e^{2}\right )}} \]

input
integrate(1/(e*x^2+d)/(c*x^4+a),x, algorithm="giac")
 
output
e^2*arctan(e*x/sqrt(d*e))/((c*d^2 + a*e^2)*sqrt(d*e)) + 1/2*((a*c^3)^(1/4) 
*c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/( 
a/c)^(1/4))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/2*((a*c^3)^(1/4) 
*c^2*d - (a*c^3)^(3/4)*e)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/( 
a/c)^(1/4))/(sqrt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) + 1/4*((a*c^3)^(1/4) 
*c^2*d + (a*c^3)^(3/4)*e)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sq 
rt(2)*a*c^3*d^2 + sqrt(2)*a^2*c^2*e^2) - 1/4*((a*c^3)^(1/4)*c^2*d + (a*c^3 
)^(3/4)*e)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(sqrt(2)*a*c^3*d^2 
 + sqrt(2)*a^2*c^2*e^2)
 
3.3.41.9 Mupad [B] (verification not implemented)

Time = 8.52 (sec) , antiderivative size = 4802, normalized size of antiderivative = 14.29 \[ \int \frac {1}{\left (d+e x^2\right ) \left (a+c x^4\right )} \, dx=\text {Too large to display} \]

input
int(1/((a + c*x^4)*(d + e*x^2)),x)
 
output
atan(((((a*e^2*(-a^3*c)^(1/2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*(a 
^5*e^4 + a^3*c^2*d^4 + 2*a^4*c*d^2*e^2)))^(1/2)*(4*c^6*d^3*e^3 - (((a*e^2* 
(-a^3*c)^(1/2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*(a^5*e^4 + a^3*c^ 
2*d^4 + 2*a^4*c*d^2*e^2)))^(1/2)*(256*a^4*c^4*e^8 + x*((a*e^2*(-a^3*c)^(1/ 
2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*(a^5*e^4 + a^3*c^2*d^4 + 2*a^ 
4*c*d^2*e^2)))^(1/2)*(512*a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6* 
d^4*e^5 + 512*a^4*c^5*d^2*e^7) - 64*a*c^7*d^6*e^2 + 128*a^2*c^6*d^4*e^4 + 
448*a^3*c^5*d^2*e^6) + x*(16*c^7*d^5*e^2 + 32*a*c^6*d^3*e^4 - 240*a^2*c^5* 
d*e^6))*((a*e^2*(-a^3*c)^(1/2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*( 
a^5*e^4 + a^3*c^2*d^4 + 2*a^4*c*d^2*e^2)))^(1/2) + 20*a*c^5*d*e^5) - 6*c^5 
*e^5*x)*((a*e^2*(-a^3*c)^(1/2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*( 
a^5*e^4 + a^3*c^2*d^4 + 2*a^4*c*d^2*e^2)))^(1/2)*1i - (((a*e^2*(-a^3*c)^(1 
/2) - c*d^2*(-a^3*c)^(1/2) + 2*a^2*c*d*e)/(16*(a^5*e^4 + a^3*c^2*d^4 + 2*a 
^4*c*d^2*e^2)))^(1/2)*(4*c^6*d^3*e^3 - (((a*e^2*(-a^3*c)^(1/2) - c*d^2*(-a 
^3*c)^(1/2) + 2*a^2*c*d*e)/(16*(a^5*e^4 + a^3*c^2*d^4 + 2*a^4*c*d^2*e^2))) 
^(1/2)*(256*a^4*c^4*e^8 - x*((a*e^2*(-a^3*c)^(1/2) - c*d^2*(-a^3*c)^(1/2) 
+ 2*a^2*c*d*e)/(16*(a^5*e^4 + a^3*c^2*d^4 + 2*a^4*c*d^2*e^2)))^(1/2)*(512* 
a^5*c^4*e^9 - 512*a^2*c^7*d^6*e^3 - 512*a^3*c^6*d^4*e^5 + 512*a^4*c^5*d^2* 
e^7) - 64*a*c^7*d^6*e^2 + 128*a^2*c^6*d^4*e^4 + 448*a^3*c^5*d^2*e^6) - x*( 
16*c^7*d^5*e^2 + 32*a*c^6*d^3*e^4 - 240*a^2*c^5*d*e^6))*((a*e^2*(-a^3*c...